The Study of Improving Kalman Filters Family for Nonlinear SLAM
نویسندگان
چکیده
When Extended Kalman Filter is used to solve the SLAM problem of a nonlinear system, the linearization error will lead to severe estimation error or even make the method to be divergent. After analyzing the linearization principle of Kalman filters family, two improved methods are suggested to decrease the linearization error. These two methods improve posterior estimation accuracy by revising the observation-update step. Simulation results indicate that the two methods are feasible. The method named ‘Mean Extended Kalman Filter’ performs much better than EKF and UKF for nonlinear SLAM. And the iterated version of EKF and UKF even falls behind MEKF in estimation accuracy. In addition, MEKF is computationally efficient. With a view to both estimation accuracy and computational complexity, MEKF seems to be the best filter of the Kalman filters family for nonlinear SLAM. Experiments are carried out with ‘Car Park Dataset’ and ‘Victoria Park Dataset’ to evaluate the performance of MEKF based SLAM solutions. And the experimental results validate the effectiveness of MEKF in real SLAM applications.
منابع مشابه
New Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملExperiment on Simultaneous Localization and Mapping Based on Unscented Kalman Filter for Unmanned Underwater Vehicles
This paper proposes a simultaneous localization and mapping (SLAM) scheme applicable to the autonomous navigation of unmanned underwater vehicles (UUV). A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the unmanned vehicle. An unscented Kalman filter (UKF) is utilized in order to develop a...
متن کاملIMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملSLAM Using EKF , EH ∞ and Mixed EH 2 / H ∞ Filter
The process of simultaneously building the map and locating a vehicle is known as Simultaneous Localization and Mapping (SLAM) and can be used for autonomous navigation. The estimation of vehicle states and landmarks plays an important role in SLAM. Most of the SLAM algorithms are based on extended Kalman filters (EKFs). However, Kalman filters are not the best choice for SLAM as they suffer fr...
متن کاملPlanar Features and 6D-SLAM based on Linear Regression Kalman Filters with n-Dimensional Approximated Gaussians
In this paper, a six-dimensional (6D) Simultaneous Localization and Mapping (SLAM) based on novel Linear Regression Kalman Filter (LRKF), called Smart Sampling Kalman Filter (S2KF), is proposed. While the conventional feature based SLAM methods use point features as landmarks, only a few take the advantage of geometric information like corners, edges, and planes. A feature based SLAM method usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 56 شماره
صفحات -
تاریخ انتشار 2009